Giải nhanh bài toán số phức bằng máy tính Casio

0
Tải
44

A. Các phép tính thông thường, tính moldun, argument, conjg của 1 số phức hay 1 biểu thức số phức và tính số phức có mũ cao
Bài toán tổng quát: Cho Z = z1.z2 – z3.z4/z5. Tìm z và tính modun, argument và số phức liên hợp của số phức Z
Phương pháp giải:
+ Để máy tính ở chế độ Deg không để dưới dạng Rad và vào chế độ số phức Mode 2
+ Khi đó chữ “i” trong phần ảo sẽ là nút “ENG” và ta thực hiện bấm máy như 1 phép tính bình thường
Tính Moldun, Argument và số phức liên hợp của số phức Z:
+ Moldun: Ấn shift + hyp. Xuất hiện dấu trị tuyệt đối thì ta nhập biểu thức đó vào trong rồi lấy kết quả
+ Tính Arg ấn Shift 2 chọn 1. Tính liên hợp ấn shift 2 chọn 2
B. Tìm căn bậc 2, chuyển số phức về dạng lượng giác và ngược lại
1. Tìm căn bậc 2 của số phức và tính tổng hệ số của căn đó
Bài toán tổng quát: Cho số phức z thỏa mãn z = f(a, bi). Tìm 1 căn bậc 2 của số phức và tính tổng, tích hoặc 1 biểu thức của hệ số
Phương pháp giải:
Cách 1: Đối với việc tìm căn bậc 2 của số phức cách nhanh nhất là ta bình phương các đáp án xem đáp án nào trùng số phức đề cho
Cách 2: Không vào chế độ Mode 2. Ta để máy ở chế độ Mode 1
+ Ấn shift + sẽ xuất hiện và ta nhập Pol(phần thực, phần ảo). Lưu ý dấu “,” là shift) sau đó ấn =
+ Ấn tiếp Shift – sẽ xuất hiện và ta nhập Rec(√X, Y:2) sau đó ấn bằng ta sẽ ra lần lượt là phần thực và phần ảo của số phức
2. Đưa số phức về dạng lượng giác và ngược lại
Bài toán tổng quát: Tìm dạng lượng giác (bán kính, góc lượng giác) của số phức thỏa mãn z = f(a, bi)
Phương pháp giải:
+ Ấn shift chọn 4 (r < θ) sau khi nhập số phức
+ Ấn = sẽ ra kế quả a < b trong đó r = a, góc = b
Chuyển từ lượng giác về số phức: chuyển về radian:
+ Nhập dạng lượng giác của số phức dưới dạng: bán kính < góc (với < là shift (-))
+ Ấn shift 2 chọn 4 (a = bi) và lấy kết quả
3. Các phép toán cơ bản hoặc tính 1 biểu thức lượng giác của số phức
Làm tương tự như dạng chính tắc của số phức

C. Phương trình số phức và các bài toán liên quan
1. Phương trình không chứa tham số
Bài toán tổng quát: Cho phương trình az^2 + bz + c = 0. Phương trình có nghiệm (số nghiệm) là?
Phương pháp giải:
+ Dùng cho máy Vinacal: Mode 2 vào chế độ phức và giải phương trình số phức như phương trình hàm số như bình thường và nhân được nghiệm phức
+ Đối với Casio fx: Nhiều phương trình có nghiệm thực nên cách tốt nhất ta sẽ nhập phương trình đề cho vào máy tính và thực hiện Calc đáp án để tìm ra đáp án
2. Phương trình tìm tham số
Bài toán tổng quát: Cho phương trình az^2 + bz + c = 0. Biết phương trình có nghiệm zi = Ai. Tìm a, b, c
Phương pháp giải:
+ Mode 2 và lần lượt thay các hệ số ở đáp án vào đề
+ Dùng Mode 5 để giải phương trình nếu phương trình nào ra nghiệm như đề cho thì đó là đáp án đúng
D. Tìm số phức thỏa mãn điều kiện phức tạp và tính tổng, tích … hệ số của số phức (Ngoài cách hỏi trên còn có thể hỏi: Tìm phần thực, phần ảo hay modun … của số phức thỏa mãn điều kiện đề bài)
Bài toán tổng quát: Cho số phức z = a + bi thỏa mã điều kiện (phức tạp kèm cả liên hợp …). Tìm số phức z?
Phương pháp giải:
+ Nhập điều kiện đề cho vào Casio. Lưu ý thay z = a + bi và liên hợp của z = a – bi
+ Calc a = 1000 và b = 100
+ Sau khi ra kết quả là : X + Yi ta sẽ phân tích X và Y theo a và b để được 2 phương trình bậc nhất 2 ẩn để giải tìm ra a và b
+ Lưu ý: Khi phân tích ưu tiên cho hệ số a nhiều nhất có thể
+ Sau khi tìm được a, b ta làm nốt yêu cầu của đề
E. Tìm tập hợp biểu diễn của số phức thỏa mãn điều kiện và hình học số phức
Bài toán tổng quát: Trên mặt phẳng hệ trục tọa độ Oxy tìm tập hợp biểu diễn của số phức z thỏa mã điều kiện
Phương pháp giải: Ưu tiên việc sử dụng 2 máy tính để giải:
+ Máy thứ 1 ta nhập điều kiện của đề cho với z và liên hợp z dạng tổng quát
+ Máy thứ 2 lần lượt các đáp án. Ta lấy 2 điểm thuộc các đáp án
+ Calc 2 điểm vừa tìm vào điều kiện. Cái nào kết quả ra 0 thì đấy là đáp án đúng
F. Cặp số (x, y) thỏa mã điều kiện phức, số số phức phù hợp với điều kiện
Phương pháp giải:
+ Mode 2 và nhập điều kiện đề cho vào Casio, chuyển hết về 1 vế
+ Calc các đáp án. Đáp án nào ra kết quả là 0 thì đó là đáp án đúng

Số phức_Việt Anh_ChemHUS (1).pdf
Đánh già tài liệu

BÌNH LUẬN BÀI VIẾT